Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668610

RESUMEN

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that irreversibly inhibit protein synthesis and consequently cause cell death. Recently, an RIP called ledodin has been found in shiitake; it is cytotoxic, strongly inhibits protein synthesis, and shows rRNA N-glycosylase activity. In this work, we isolated and characterized a 50 kDa cytotoxic protein from shiitake that we named edodin. Edodin inhibits protein synthesis in a mammalian cell-free system, but not in insect-, yeast-, and bacteria-derived systems. It exhibits rRNA N-glycosylase and DNA-nicking activities, which relate it to plant RIPs. It was also shown to be toxic to HeLa and COLO 320 cells. Its structure is not related to other RIPs found in plants, bacteria, or fungi, but, instead, it presents the characteristic structure of the fold type I of pyridoxal phosphate-dependent enzymes. Homologous sequences have been found in other fungi of the class Agaricomycetes; thus, edodin could be a new type of toxin present in many fungi, some of them edible, which makes them of great interest in health, both for their involvement in food safety and for their potential biomedical and biotechnological applications.


Asunto(s)
Ribosomas , Hongos Shiitake , Humanos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Hongos Shiitake/química , Células HeLa , Animales , Micotoxinas/toxicidad , Micotoxinas/química , Proteínas Inactivadoras de Ribosomas/química , Proteínas Inactivadoras de Ribosomas/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/toxicidad , Proteínas Fúngicas/farmacología , Proteínas Fúngicas/metabolismo , Línea Celular Tumoral
2.
Toxins (Basel) ; 16(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38668617

RESUMEN

The control of crop diseases caused by fungi remains a major problem and there is a need to find effective fungicides that are environmentally friendly. Plants are an excellent source for this purpose because they have developed defense mechanisms to cope with fungal infections. Among the plant proteins that play a role in defense are ribosome-inactivating proteins (RIPs), enzymes obtained mainly from angiosperms that, in addition to inactivating ribosomes, have been studied as antiviral, fungicidal, and insecticidal proteins. In this review, we summarize and discuss the potential use of RIPs (and other proteins with similar activity) as antifungal agents, with special emphasis on RIP/fungus specificity, possible mechanisms of antifungal action, and the use of RIP genes to obtain fungus-resistant transgenic plants. It also highlights the fact that these proteins also have antiviral and insecticidal activity, which makes them very versatile tools for crop protection.


Asunto(s)
Antifúngicos , Proteínas Inactivadoras de Ribosomas , Proteínas Inactivadoras de Ribosomas/farmacología , Antifúngicos/farmacología , Proteínas de Plantas/farmacología , Proteínas de Plantas/genética , Hongos/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente , Animales , Fungicidas Industriales/farmacología
3.
Protein Sci ; 32(4): e4621, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36905289

RESUMEN

We have purified ledodin, a cytotoxic 22-kDa protein from shiitake mushroom (Lentinula edodes) consisting of a 197 amino acid chain. Ledodin possessed N-glycosylase activity on the sarcin-ricin loop of mammalian 28S rRNA and inhibited protein synthesis. However, it was not active against insect, fungal, and bacterial ribosomes. In vitro and in silico studies suggested that ledodin exhibits a catalytic mechanism like that of DNA glycosylases and plant ribosome-inactivating proteins. Moreover, the sequence and structure of ledodin was not related to any protein of known function, although ledodin-homologous sequences were found in the genome of several species of fungi, some edible, belonging to different orders of the class Agaricomycetes. Therefore, ledodin could be the first of a new family of enzymes widely distributed among this class of basidiomycetes. The interest of these proteins lies both, in the fact that they can be a toxic agent of some edible mushrooms and in their application in medicine and biotechnology.


Asunto(s)
Hongos Shiitake , Animales , Saporinas , Hongos Shiitake/genética , Hongos Shiitake/química , Mamíferos
4.
Toxins (Basel) ; 15(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36668855

RESUMEN

After more than 50 years of research, studies on the structure and biological activities of ribosome-inactivating proteins (RIPs) continue to provide a field of great interest within the scientific community, both for the health risks they pose and their applications in medicine and biotechnology [...].


Asunto(s)
Proteínas Inactivadoras de Ribosomas , Ribosomas , Proteínas Inactivadoras de Ribosomas/química , Ribosomas/metabolismo , Proteínas de Plantas/metabolismo
5.
Toxins (Basel) ; 14(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36136551

RESUMEN

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that catalyze the removal of a specific adenine located in the sarcin-ricin loop of the large ribosomal RNA, which leads to the irreversible inhibition of protein synthesis and, consequently, cell death. The case of elderberry (Sambucus nigra L.) is unique, since more than 20 RIPs and related lectins have been isolated and characterized from the flowers, seeds, fruits, and bark of this plant. However, these kinds of proteins have never been isolated from elderberry leaves. In this work, we have purified RIPs and lectins from the leaves of this shrub, studying their main physicochemical characteristics, sequences, and biological properties. In elderberry leaves, we found one type 2 RIP and two related lectins that are specific for galactose, four type 2 RIPs that fail to agglutinate erythrocytes, and one type 1 RIP. Several of these proteins are homologous to others found elsewhere in the plant. The diversity of RIPs and lectins in the different elderberry tissues, and the different biological activities of these proteins, which have a high degree of homology with each other, constitute an excellent source of proteins that are of great interest in diagnostics, experimental therapy, and agriculture.


Asunto(s)
Ricina , Sambucus nigra , Sambucus , Adenina , Secuencia de Aminoácidos , Galactosa , N-Glicosil Hidrolasas/genética , Hojas de la Planta/metabolismo , Lectinas de Plantas/farmacología , Proteínas de Plantas/genética , Plantas/metabolismo , ARN Ribosómico , Proteínas Inactivadoras de Ribosomas/metabolismo , Proteínas Inactivadoras de Ribosomas/farmacología , Ribosomas/metabolismo , Ricina/metabolismo , Sambucus nigra/genética , Sambucus nigra/metabolismo
6.
Toxins (Basel) ; 14(8)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-36006228

RESUMEN

Ribosome-inactivating proteins (RIPs) are known as RNA N-glycosylases. They depurinate the major rRNA, damaging ribosomes and inhibiting protein synthesis. Here, new single-chain (type-1) RIPs named sodins were isolated from the seeds (five proteins), edible leaves (one protein) and roots (one protein) of Salsola soda L. Sodins are able to release Endo's fragment when incubated with rabbit and yeast ribosomes and inhibit protein synthesis in cell-free systems (IC50 = 4.83-79.31 pM). In addition, sodin 5, the major form isolated from seeds, as well as sodin eL and sodin R, isolated from edible leaves and roots, respectively, display polynucleotide:adenosine glycosylase activity and are cytotoxic towards the Hela and COLO 320 cell lines (IC50 = 0.41-1200 nM), inducing apoptosis. The further characterization of sodin 5 reveals that this enzyme shows a secondary structure similar to other type-1 RIPs and a higher melting temperature (Tm = 76.03 ± 0.30 °C) and is non-glycosylated, as other sodins are. Finally, we proved that sodin 5 possesses antifungal activity against Penicillium digitatum.


Asunto(s)
Salsola , Secuencia de Aminoácidos , Animales , Células HeLa , Humanos , N-Glicosil Hidrolasas/química , Proteínas de Plantas/química , Conejos , Proteínas Inactivadoras de Ribosomas/metabolismo , Proteínas Inactivadoras de Ribosomas/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 1 , Ribosomas/metabolismo , Salsola/metabolismo
7.
Toxins (Basel) ; 13(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34941700

RESUMEN

Kirkiin is a new type 2 ribosome-inactivating protein (RIP) purified from the caudex of Adenia kirkii with a cytotoxicity compared to that of stenodactylin. The high toxicity of RIPs from Adenia genus plants makes them interesting tools for biotechnology and therapeutic applications, particularly in cancer therapy. The complete amino acid sequence and 3D structure prediction of kirkiin are here reported. Gene sequence analysis revealed that kirkiin is encoded by a 1572 bp open reading frame, corresponding to 524 amino acid residues, without introns. The amino acid sequence analysis showed a high degree of identity with other Adenia RIPs. The 3D structure of kirkiin preserves the overall folding of type 2 RIPs. The key amino acids of the active site, described for ricin and other RIPs, are also conserved in the kirkiin A chain. Sugar affinity studies and docking experiments revealed that both the 1α and 2γ sites of the kirkiin B chain exhibit binding activity toward lactose and D-galactose, being lower than ricin. The replacement of His246 in the kirkiin 2γ site instead of Tyr248 in ricin causes a different structure arrangement that could explain the lower sugar affinity of kirkiin with respect to ricin.


Asunto(s)
Secuencia de Aminoácidos , Sitios de Unión , Proteínas Inactivadoras de Ribosomas Tipo 2/química , Proteínas Inactivadoras de Ribosomas Tipo 2/genética , Dominio Catalítico , Simulación del Acoplamiento Molecular , Passifloraceae/química , Passifloraceae/genética , Proteínas de Plantas/química , Dominios Proteicos , Ricina/química , Análisis de Secuencia de ADN
8.
Toxins (Basel) ; 13(2)2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573355

RESUMEN

Ebulin l is an A-B toxin, and despite the presence of a B chain, this toxin displays much less toxicity to cells than the potent A-B toxin ricin. Here, we studied the binding, mechanisms of endocytosis, and intracellular pathway followed by ebulin l and compared it with ricin. COS-1 cells and HeLa cells with inducible synthesis of a mutant dynamin (K44A) were used in this study. The transport of these toxins was measured using radioactively or fluorescently labeled toxins. The data show that ebulin l binds to cells to a lesser extent than ricin. Moreover, the expression of mutant dynamin does not affect the endocytosis, degradation, or toxicity of ebulin l. However, the inhibition of clathrin-coated pit formation by acidification of the cytosol reduced ebulin l endocytosis but not toxicity. Remarkably, unlike ricin, ebulin l is not transported through the Golgi apparatus to intoxicate the cells and ebulin l induces apoptosis as the predominant cell death mechanism. Therefore, after binding to cells, ebulin l is taken up by clathrin-dependent and -independent endocytosis into the endosomal/lysosomal system, but there is no apparent role for clathrin and dynamin in productive intracellular routing leading to intoxication.


Asunto(s)
Apoptosis/efectos de los fármacos , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitosis , Proteínas Inactivadoras de Ribosomas Tipo 2/metabolismo , Proteínas Inactivadoras de Ribosomas Tipo 2/toxicidad , Animales , Células COS , Chlorocebus aethiops , Dinaminas/genética , Células HeLa , Humanos , Mutación , Transporte de Proteínas , Proteolisis , Ricina/metabolismo
9.
Toxins (Basel) ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499082

RESUMEN

Ribosome-inactivating proteins (RIPs) are plant toxins that irreversibly damage ribosomes and other substrates, thus causing cell death. RIPs are classified in type 1 RIPs, single-chain enzymatic proteins, and type 2 RIPs, consisting of active A chains, similar to type 1 RIPs, linked to lectin B chains, which enable the rapid internalization of the toxin into the cell. For this reason, many type 2 RIPs are very cytotoxic, ricin, volkensin and stenodactylin being the most toxic ones. From the caudex of Adenia kirkii (Mast.) Engl., a new type 2 RIP, named kirkiin, was purified by affinity chromatography on acid-treated Sepharose CL-6B and gel filtration. The lectin, with molecular weight of about 58 kDa, agglutinated erythrocytes and inhibited protein synthesis in a cell-free system at very low concentrations. Moreover, kirkiin was able to depurinate mammalian and yeast ribosomes, but it showed little or no activity on other nucleotide substrates. In neuroblastoma cells, kirkiin inhibited protein synthesis and induced apoptosis at doses in the pM range. The biological characteristics of kirkiin make this protein a potential candidate for several experimental pharmacological applications both alone for local treatments and as component of immunoconjugates for systemic targeting in neurodegenerative studies and cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neuroblastoma/tratamiento farmacológico , Passifloraceae/enzimología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 2/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Agregación Eritrocitaria/efectos de los fármacos , Humanos , Peso Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Inhibidores de la Síntesis de la Proteína/toxicidad , Proteínas Inactivadoras de Ribosomas Tipo 2/aislamiento & purificación , Proteínas Inactivadoras de Ribosomas Tipo 2/toxicidad , Ribosomas/efectos de los fármacos , Ribosomas/genética , Ribosomas/metabolismo
10.
Toxins (Basel) ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499086

RESUMEN

Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.


Asunto(s)
Antivirales/farmacología , Control Biológico de Vectores , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente/enzimología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Inactivadoras de Ribosomas/farmacología , Toxinas Biológicas/farmacología , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Humanos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Proteínas Inactivadoras de Ribosomas/aislamiento & purificación , Toxinas Biológicas/aislamiento & purificación , Virosis/metabolismo , Virosis/virología , Virus/metabolismo , Virus/patogenicidad
11.
Toxins (Basel) ; 12(9)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825611

RESUMEN

Stenodactylin is one of the most potent type 2 ribosome-inactivating proteins (RIPs); its high toxicity has been demonstrated in several models both in vitro and in vivo. Due to its peculiarities, stenodactylin could have several medical and biotechnological applications in neuroscience and cancer treatment. In this work, we report the complete amino acid sequence of stenodactylin and 3D structure prediction. The comparison between the primary sequence of stenodactylin and other RIPs allowed us to identify homologies/differences and the amino acids involved in RIP toxic activity. Stenodactylin RNA was isolated from plant caudex, reverse transcribed through PCR and the cDNA was amplificated and cloned into a plasmid vector and further analyzed by sequencing. Nucleotide sequence analysis showed that stenodactylin A and B chains contain 251 and 258 amino acids, respectively. The key amino acids of the active site described for ricin and most other RIPs are also conserved in the stenodactylin A chain. Stenodactylin amino acid sequence shows a high identity degree with volkensin (81.7% for A chain, 90.3% for B chain), whilst when compared with other type 2 RIPs the identity degree ranges from 27.7 to 33.0% for the A chain and from 42.1 to 47.7% for the B chain.


Asunto(s)
Lectinas/química , Lectinas/genética , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Toxinas Biológicas/química , Toxinas Biológicas/genética , Secuencia de Aminoácidos , Predicción , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
ACS Chem Biol ; 14(6): 1319-1327, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31136705

RESUMEN

Ribotoxins make up a group of extracellular rRNA endoribonucleases produced by ascomycetes that display cytotoxicity toward animal cells, having been proposed as insecticidal agents. Recently, the ribotoxin Ageritin has been isolated from the basidiomycetes Agrocybe aegerita (poplar mushroom), suggesting that ribotoxins are widely distributed among fungi. To gain insights into the protective properties of Ageritin against pathogens and its putative biotechnological applications, we have tested several biological activities of Ageritin, comparing them with those of the well-known ribotoxin α-sarcin, and we found that Ageritin displayed, in addition to the already reported activities, (i) antibacterial activity against Micrococcus lysodeikticus, (ii) activity against the tobacco mosaic virus RNA, (iii) endonuclease activity against a supercoiled plasmid, (iv) nuclease activity against genomic DNA, (v) cytotoxicity to COLO 320, HeLa, and Raji cells by promoting apoptosis, and (vi) antifungal activity against the green mold Penicillium digitatum. Therefore, Ageritin and α-sarcin can induce resistance not only to insects but also to viruses, bacteria, and fungi. The multiple biological activities of Ageritin could be exploited to improve resistance to different pathogens by engineering transgenic plants. Furthermore, the induction of cell death by different mechanisms turns these ribotoxins into useful tools for cancer therapy.


Asunto(s)
Agrocybe/química , Proliferación Celular/efectos de los fármacos , Citotoxinas/farmacología , Ribonucleasas/farmacología , Antiinfecciosos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Pruebas de Sensibilidad Microbiana , Micrococcus/efectos de los fármacos , Ribonucleasas/aislamiento & purificación , Virus del Mosaico del Tabaco/efectos de los fármacos
13.
ACS Chem Biol ; 13(8): 1978-1982, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29952541

RESUMEN

Among the putative defense proteins that occur in fungi, one of the best studied is α-sarcin, produced by the mold Aspergillus giganteus. This protein is the most significant member of the ribotoxin family, which consists of extracellular rRNA ribonucleases that display cytotoxic activity toward animal cells. Ribotoxins are rRNA endonucleases that catalyze the hydrolysis of the phosphodiester bond between G4325 and A4326 from the rat 28S rRNA. The results of several experimental approaches have led to propose ribotoxins as insecticidal agents. In this work, we report that α-sarcin displays a strong antifungal activity against Penicillium digitatum, being able to enter into the cytosol where it inactivates the ribosomes, thus killing the cells and arresting the growth of the fungus. This is the first time that a ribotoxin has been found to display antifungal activity. Therefore, this protein could play, besides the already proposed insecticidal function, a role in nature as an antifungal agent.


Asunto(s)
Antifúngicos/farmacología , Endorribonucleasas/farmacología , Proteínas Fúngicas/farmacología , Penicillium/efectos de los fármacos , Hidrólisis , Micelio/efectos de los fármacos , ARN Ribosómico/efectos de los fármacos , ARN Ribosómico/metabolismo , Ribosomas/efectos de los fármacos
14.
Bio Protoc ; 7(6): e2180, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34458490

RESUMEN

Ribosome-inactivating proteins (RIPs) are enzymes that irreversibly inactivate ribosomes as a consequence of their N-glycosylase (EC 3.2.2.22) activity. The enzyme cleaves the N-glycosidic bond between the adenine No. 4324 from the 28S rRNA and its ribose in rat ribosomes (or the equivalent adenine in sensitive ribosomes from other organisms). This adenine is located in the α-sarcin-ricin loop (SRL) that is crucial for anchoring the elongation factor (EF) G and EF2 on the ribosome during mRNA-tRNA translocation in prokaryotes and eukaryotes, respectively. RIPs have been isolated mainly from plants and examples of these proteins are ricin or Pokeweed Antiviral Protein (PAP). These proteins, either alone or as a part of immunotoxins, are useful tools for cancer therapy. The following protocol describes a method to detect the RNA fragment released when the RIP-treated apurinic RNA from rabbit reticulocyte lysate is incubated in the presence of acid aniline by electrophoresis on polyacrylamide gels. The fragment released (Endo's fragment) is diagnostic of the action of RIPs.

15.
Int J Biol Macromol ; 93(Pt A): 1041-1050, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27659002

RESUMEN

Myoglobin (Mb) is studied to clarify the structure-function relationships in protein science. In this work, we report the results of a comparative analysis of amino acid sequences from 298 vertebrate Mbs. Forty-one high conserved residues were identified and seven of them were invariants [E18, G25, F43, V68, L72, H93 (proximal histidine) and H97]. E18 is the only invariant amino acid residue located out of the heme-pocket and Xe-cavities playing a role in interaction between the A and E-helices. A comparative analysis of several parameters related to amino acid composition shows an increase of average mass, accessible surface area and volume per residue from Actinopterygii to Mammalia and Aves. This may be due to an increased number of bulky residues reducing the non-specific cavities volume and thus improving the oxygen flow between the heme site and the outside of the protein. Finally, the phylogenetic analyses of Mb in vertebrates are consistent with an evolution that runs with the diversification of the species, but in which several episodes of gene duplication and lost have occurred, less frequently in the ancestors of great taxons, cartilaginous fishes and non-avian reptiles, most frequently in ray-finned fishes and mammals, and very frequently in birds.


Asunto(s)
Evolución Molecular , Mioglobina/química , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/genética , Secuencia de Consenso , Proteínas de Peces/química , Proteínas de Peces/genética , Mioglobina/genética , Filogenia , Conformación Proteica , Proteínas de Reptiles/química , Proteínas de Reptiles/genética , Homología de Secuencia de Aminoácido , Vertebrados
16.
Biochim Biophys Acta ; 1860(6): 1256-64, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26971856

RESUMEN

BACKGROUND: The species from the genus Phytolacca constitute one of the best sources of ribosome-inactivating proteins (RIPs) that have been used both in the therapy against virus and tumors and in the construction of transgenic plants resistant to virus, bacteria, fungi and insects. Here we investigate new activities of three representative RIPs from Phytolacca dioica (dioicin 2, PD-S2 and PD-L4). RESULTS: The three RIPs displayed, in addition to already reported activities, rRNA N-glycosylase activities against plant, bacterial and fungal ribosomes. Additionally dioicin 2 and PD-L4 displayed endonuclease activity on a supercoiled plasmid DNA, and dioicin 2 and PD-S2 arrested the growth of the fungus Penicillium digitatum. Furthermore, dioicin 2 induced caspase activation and apoptosis in cell cultures. CONCLUSIONS: The different activities of the RIPs from Phytolacca dioica may explain the antipathogenic properties attributed to these RIPs in plants and their antiviral and antitumoral effects. In spite of the similarity in their rRNA N-glycosylase and DNA polynucleotide:adenosine glycosylase activities, they differed in their activities against viral RNA, plasmid DNA, fungi and animal cultured cells. This suggests that the presence of isoforms might optimize the response of the plant against several types of pathogens. GENERAL SIGNIFICANCE: RIPs from Phytolacca can induce plant resistance or tumor cell death not only by means of ribosome inactivation but also by the activities found in this report. Furthermore, the induction of cell death by different mechanisms turns these RIPs into more useful tools for cancer treatment rendering the selection of RIP-resistant mutants impossible.


Asunto(s)
Phytolacca/química , Proteínas Inactivadoras de Ribosomas/farmacología , Secuencia de Aminoácidos , Endonucleasas/metabolismo , Datos de Secuencia Molecular , Penicillium/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Inactivadoras de Ribosomas/metabolismo
17.
Planta ; 241(2): 421-33, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25326773

RESUMEN

MAIN CONCLUSION: The ribosome inactivating protein BE27 displays several biological activities in vitro that could result in a broad action against several types of pathogens. Beetin 27 (BE27), a ribosome-inactivating protein (RIP) from sugar beet (Beta vulgaris L.) leaves, is an antiviral protein induced by virus and signaling compounds such as hydrogen peroxide and salicylic acid. Its role as a defense protein has been attributed to its RNA polynucleotide:adenosine glycosidase activity. Here we tested other putative activities of BE27 that could have a defensive role against pathogens finding that BE27 displays rRNA N-glycosidase activity against yeast and Agrobacterium tumefaciens ribosomes, DNA polynucleotide:adenosine glycosidase activity against herring sperm DNA, and magnesium-dependent endonuclease activity against the supercoiled plasmid PUC19 (nicking activity). The nicking activity could be a consequence of an unusual conformation of the BE27 active site, similar to that of PD-L1, a RIP from Phytolacca dioica L. leaves. Additionally, BE27 possesses superoxide dismutase activity, thus being able to produce the signal compound hydrogen peroxide. BE27 is also toxic to COLO 320 cells, inducing apoptosis in these cells by either activating the caspase pathways and/or inhibiting protein synthesis. The combined effect of these biological activities could result in a broad action against several types of pathogens such as virus, bacteria, fungi or insects.


Asunto(s)
Beta vulgaris/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Agrobacterium/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Hojas de la Planta/química , Levaduras/efectos de los fármacos
18.
Toxins (Basel) ; 3(5): 420-41, 2011 05.
Artículo en Inglés | MEDLINE | ID: mdl-22069717

RESUMEN

The type 2 ribosome-inactivating proteins (RIPs) isolated from some species belonging to the Sambucus genus, have the characteristic that although being even more active than ricin inhibiting protein synthesis in cell-free extracts, they lack the high toxicity of ricin and related type 2 RIPs to intact cells and animals. This is due to the fact that after internalization, they follow a different intracellular pathway that does not allow them to reach the cytosolic ribosomes. The lack of toxicity of type 2 RIPs from Sambucus make them good candidates as toxic moieties in the construction of immunotoxins and conjugates directed against specific targets. Up to now they have been conjugated with either transferrin or anti-CD105 to target either transferrin receptor- or endoglin-overexpressing cells, respectively.


Asunto(s)
Antineoplásicos/farmacología , Inmunotoxinas/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Inactivadoras de Ribosomas Tipo 2/química , Proteínas Inactivadoras de Ribosomas Tipo 2/farmacología , Sambucus/química , Animales , Anticuerpos Monoclonales/química , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Inmunotoxinas/química , Inmunotoxinas/uso terapéutico , Dosificación Letal Mediana , Modelos Moleculares , Neoplasias/inmunología , Conformación Proteica , Proteínas Inactivadoras de Ribosomas Tipo 2/genética , Proteínas Inactivadoras de Ribosomas Tipo 2/aislamiento & purificación
19.
J Exp Bot ; 59(6): 1215-23, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18343888

RESUMEN

BE27 and BE29 are two forms of beetin, a virus-inducible type 1 ribosome-inactivating protein isolated from leaves of Beta vulgaris L. Western blot analysis revealed the presence of beetin forms in adult plants but not in germ or young plants, indicating that the expression of these proteins is developmentally regulated. While beetins are expressed only in adult plants, their transcripts are present through all stages of development. In addition, the treatment of B. vulgaris leaves with mediators of plant-acquired resistance such as salicylic acid and hydrogen peroxide promoted the expression of beetin by induction of its transcript, but only in adult plants. The plant expresses three mRNAs which differ only in their 3' untranslated region. All these observations suggest a dual regulation of beetin expression, i.e. at the post-transcriptional and transcriptional levels. Additionally, total RNA isolated from leaves treated with hydrogen peroxide, which express high levels of active beetin, is not de-adenylated by endogenous beetin, nor in vitro by the addition of BE27, thus suggesting that sugar beet ribosomes are resistant to beetin.


Asunto(s)
Beta vulgaris/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Proteínas Inactivadoras de Ribosomas/genética , Ácido Salicílico/farmacología , Activación Transcripcional/efectos de los fármacos , Regiones no Traducidas 3'/química , Regiones no Traducidas 3'/aislamiento & purificación , Regiones no Traducidas 3'/metabolismo , Secuencia de Bases , Beta vulgaris/efectos de los fármacos , Beta vulgaris/enzimología , Beta vulgaris/crecimiento & desarrollo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Procesamiento de Término de ARN 3' , ARN Mensajero/química , ARN Mensajero/aislamiento & purificación , ARN Mensajero/metabolismo , ARN de Planta/química , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Inactivadoras de Ribosomas/metabolismo , Homología de Secuencia de Ácido Nucleico
20.
Phytochemistry ; 69(4): 857-64, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18068741

RESUMEN

Young shoots of Sambucus ebulus L. contain a monomeric d-galactose binding lectin (SELlm), which disappears upon shoot development, and was previously undetected since it co-purifies with the non-toxic type 2 ribosome-inactivating protein ebulin l and the dimeric lectin SELld. Molecular cloning of cDNA coding for SELlm and mass spectrometry analysis revealed a protein with a molecular mass of 34,239 Da, which displays 80%, 77% and 45% of amino acid sequence identity with the ebulin l-B chain, SELld and ricin-B chain, respectively. Furthermore, the cloned precursor, with respect to the ebulin l precursor is truncated and contains the signal peptide, a piece of the A chain, a piece of the connecting peptide and the B chain. Further processing yields the lectin protein, which contains only the B chain. Despite the fact that SELlm displays the same d-galactose-binding sites than ricin, it was found that the lectin has different binding properties to D-galactose-containing matrix than ricin. Notably, and unlike ricin, the binding of SELlm and other Sambucus lectins to such matrix was maximum in range of 0-10 degrees C and abolished at 20 degrees C.


Asunto(s)
Galectinas/metabolismo , Lectinas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Sambucus/metabolismo , Secuencia de Aminoácidos , Cromatografía de Afinidad , Simulación por Computador , Galectinas/química , Galectinas/genética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/genética , Brotes de la Planta/genética , Unión Proteica , Estructura Secundaria de Proteína , Ricina/metabolismo , Sambucus/genética , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...